

Silica/Polysiloxane Ablative

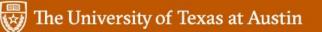
Kurt Schellhase, GRA

Outline

- Background and motivation
- Characterization methods
- Neat resin
- Prepreg manufacturing
- Creation of Si/DG composites
- Ablation testing
- Future work

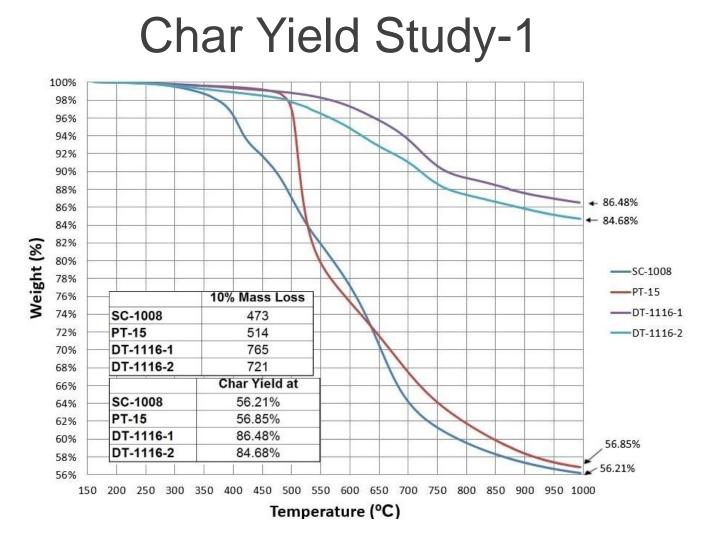
Background

- To investigate next generation TPS materials
- Alternative to phenolic
- Polysiloxane resins
 - Very popular in electronics industry
 - Typically poorer mechanical properties
 - Researchers have shown success in reinforcing polysiloxane with different fillers/additives, thermal properties usually suffer
 - To find a good balance between the two

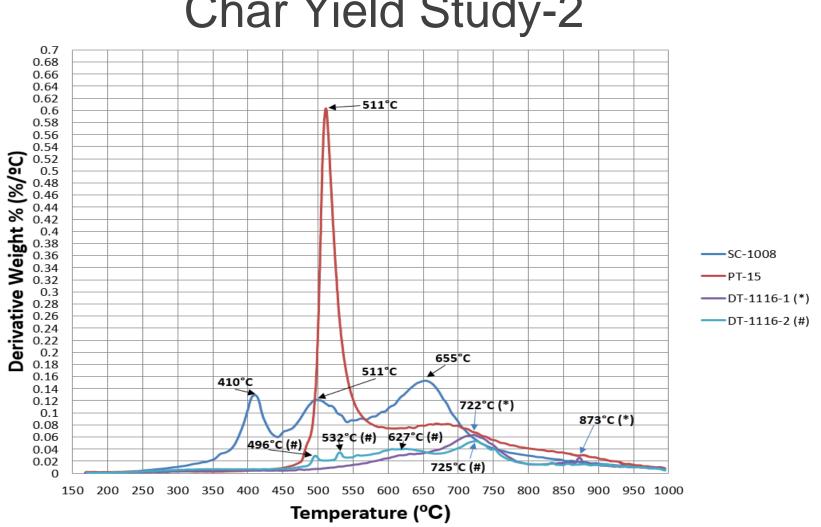

Control Sample

- Using legacy material as control, S/Ph
- Working with lower grade silica fabric, 96% SiO₂, to perfect processing
- Eventually will use aerospace grade silica fabric, 99% SiO₂
- Aiming to make 1.72g/cc control samples

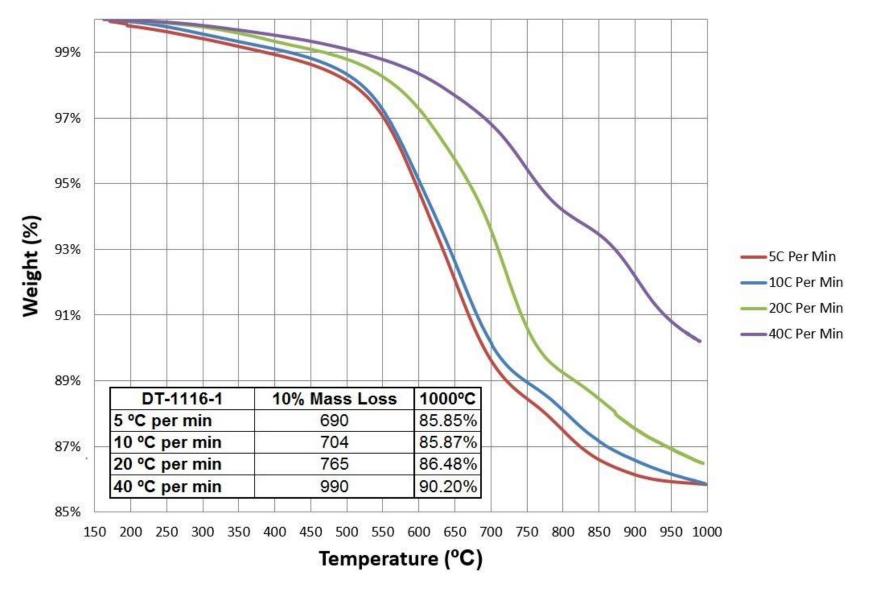
DG Polysiloxane Resin


- Inorganic matrix, utilizing a mixture of polysiloxane chemistries manufactured Dyna-Glas Technologies LLC
- Will be examined two proprietary formulations
 - DG-1 : Original neat resin
 - DG-2 : Neat resin with fillers to help curing cycle

Material Characterization


- Thermogravimetric Analysis
 - Thermal Stability & Char Yield
- Microscale Combustion Calorimeter
 - Heat Release Rate and Capacity
- Kinetic Parameters Modeling
 - Activation Energy
- Oxygen-Acetylene Test Bed
 - Ablative Performance

Char yield results for SC-1008, PT-15, DG-1, and DG-2.



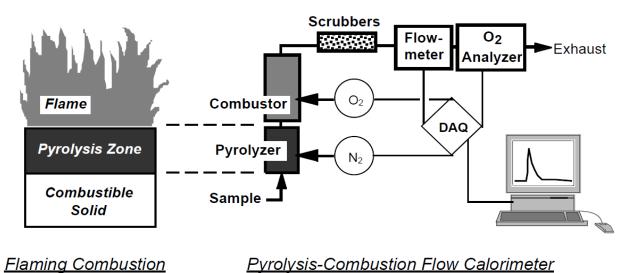
Char Yield Study-2

dTGA for SC-1008, PT-15, DG-1, and DG-2.

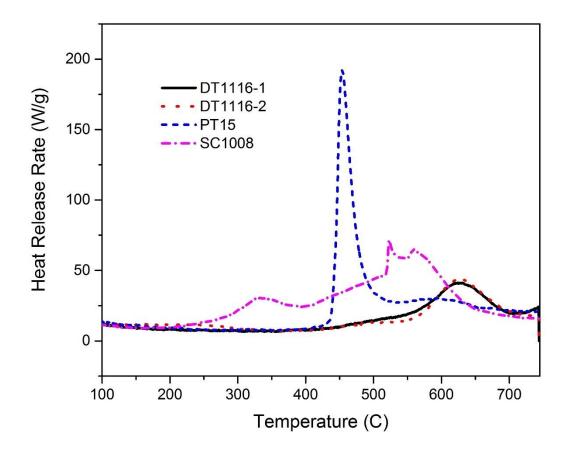
DG-1 polysiloxane at heating rates of 5, 10, 20, and 40°C/min

	10% Mass Loss Temperature (°C)						
	5 °C/min	10 °C/min	20 °C/min	40 °C/min			
SC-1008	416	439	473	557			
PT-15	474	491	514	550			
DT-1116-1	690	704	765	990			
DT-1116-2	688	686	721	781			

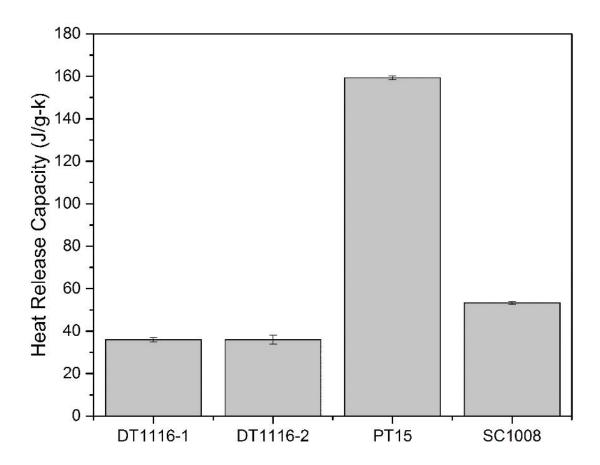
Decomposition temperature (T_d) of 10% mass loss temperature


	Weight % at 1000°C						
	5 °C/min	10 °C/min	20 °C/min	40 °C/min			
SC-1008	61.38%	57.54%	56.21%	56.99%			
PT-15	60.61%	57.69%	56.85%	55.44%			
DT-1116-1	85.85%	85.87%	86.48%	90.20%			
DT-1116-2	86.16%	85.16%	84.68%	85.14%			

Weight % at 1,000°C


Flammability Properties-1

- Microscale Combustion Calorimeter
- Lab scale for small sizes
- Screening tool
- Good alternative to a cone calorimeter


Flammability Properties-2

Typical heat release curves for the four resin systems

Flammability Properties-3

Comparison of the Heat Release Capacities for the four resin systems

2D Laminates

- High resin loss from flow
- Gave decent densities
- Allows for refining of prepreg and testing of different gelling procedures

Silica/DG 2D laminate coupons, 2"x2"x9plies

15

50wt% Resin

40wt% Resin

Silica/DG pre-pregs made using different solvents and amounts

BMC Processing

- Prepreg chopped into ½"x ½" squares
- Attempt reduce resin loss
 - More gel time in oven
 - Apply gentle pressures
- Obtain density comparable to 1.71 g/cc

BMC being compressed by the weight of the mold

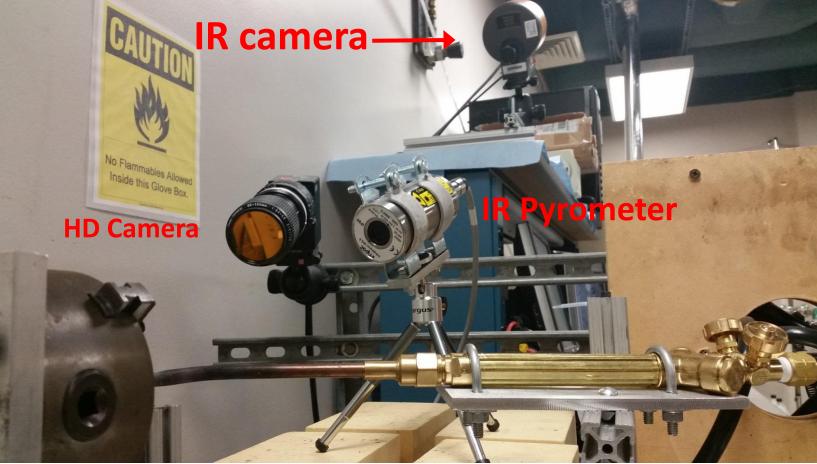
Test Coupons

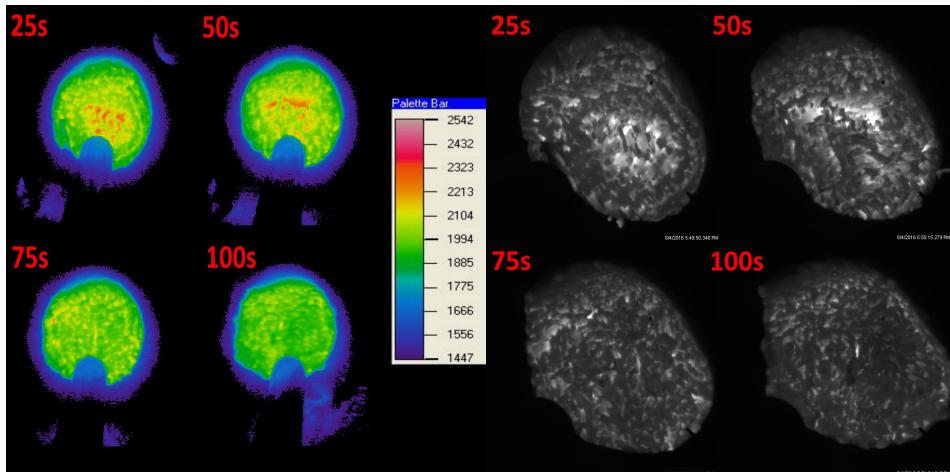
S/DG 1.56g/cc

S/Ph 1.65g/cc

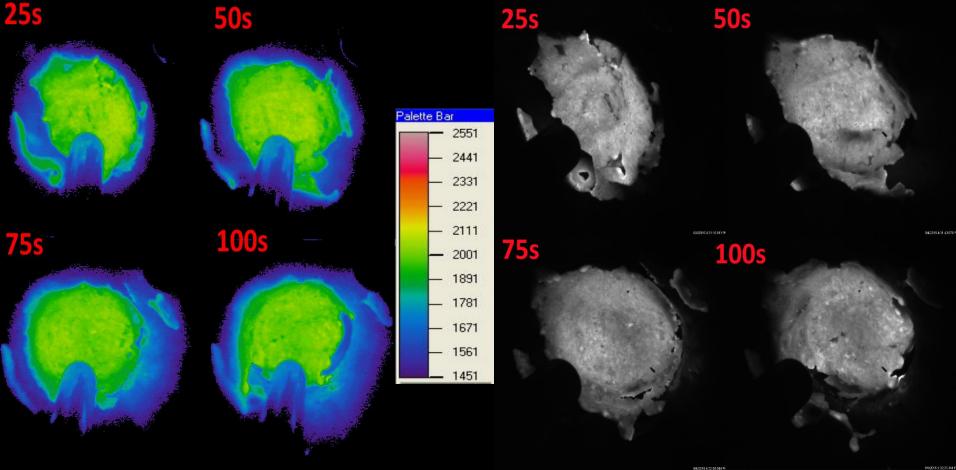
17

18

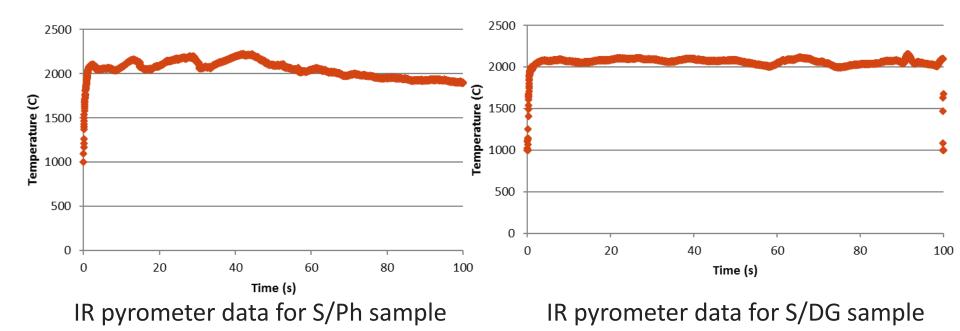




Post-test samples


Instrument Placement Ablation Testing

Ablation Testing S/Ph



Ablation Testing S/DG

Surface Temperature

23

Summary of Test 1

Material:	Silica Pheno lic	Density is 1.62 g/cc							
							Max	Peak	Peak
	Heatfl						IR	Heat-	Heat-
	ux		Test	Mass	Reces	Recessi	Pyro	Soak	Soak
Sample	(W/c		Time	loss	sion	on Rate	Temp	time	Temp
Number	m²)	OFR	(s)	(%)	(mm)	(mm/s)	(°C)	(s)	(°C)
4	867	4.8:4	100*	47.90	5.46	0.05	2159		**
6	867	4.8:4	180	61.18	10.25	0.06	2146		**
8	867	4.8:4	173*	61.18	8.66	0.05	2128		**
5	867	4.8:4	100	31.70	3.17	0.03	2226	139	110

*Testing time was reduced on some trials due to flame deflecting

Summary of Test 2

Material:	Silica/ DT 1100	Density is 1.56 g/cc							
	Heatfl						Max IR	Peak	Peak Heat-
Sample Number	ux (W/cm ²)	OFR	Test Time (s)	Mass loss (%)	Reces sion (mm)	Recessi on Rate (mm/s)	Pyro Temp (°C)	Heat- Soak time (s)	Soak Temp (°C)
4	867	4.8:4	180	52.82	7.63	0.04	2220	190	313
7	867	4.8:4	180	44.81	8.09	0.04	2243		**
9	867	4.8: 4	139*	40.45	6.91	0.05	2264		**
6	867	4.8:4	100	28.20	3.6	0.04	2161	100	354
8	867	4.8:4	100	29.36	3.9	0.04	2158	100	304

** TC failure during test.

S/DG-1 (t-butyl)

S/DG-1, 1.56g/cc

S/DG (IPA)

S/DG-2, 1.62g/cc

S/DG-3, 1.55g/cc

Conclusion

- DG-1 exhibited the best results with 87% char yield. An increase of ~54% compared to phenolic and cyanate ester resins.
- DG-1 had a HRC of 36 J/g-K. SC-1008 phenolic's HRC was 48% higher at 53.31 J/g-K and PT-15 cyanate ester's HRC was 443% higher at 159.33 J/g-K
- Preliminary ablation data from non-ideal sample looks promising
- Better processing method needed to obtain best quality samples

Future Work

- Test various S/DG Resin: Fiber ratios
- Ablation testing using Oxygen-Acetylene Test Bed (OTB) and Inductively Coupled Plasma (ICP) torch
- Dispersion of nanosilica into the resin
- Incorporation of aerospace grade silica fabric into the polysiloxane resin
- Mechanical properties
- Incorporation of Nafen alumina nano-fiber